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Thin film lubrication

1. Intro and derivation of the Reynolds equation

2. Analytical & numerical solution of simple cases

• 1D hydrodynamic slider

• 1D slider with normal squeeze motion

• Lubricated cylinder on plane

• Journal bearing with infinite length

• 2D hydrodynamic slider

OUTLINE

Federico 
Colombo

Luigi 
Lentini

Edoardo
Goti

from Politecnico di Torino



Lubrication is often a need to save energy (reduce losses 
due to friction) and to increase life of the components in 
contact through a surface and in relative motion (reduce 
or prevent wear).

The behavior of sliding surfaces is strongly modified with 
the introduction of a lubricant between them:
- Solid
- Liquid
- gaseous lubricant 

A very important parameter of the lubricant is the 
viscosity, to which friction is proportional.

INTRODUCTION ON LUBRICATION



Dimensionless film height between two 
rough surfaces a and b:

Λ =
ℎ𝑚𝑖𝑛

𝑅𝑞𝑎
2 + 𝑅𝑞𝑏

2

Lubrication regimes:

   boundary lubrication

     mixed lubrication

   full film lubrication 

LUBRICATION REGIMES

Λ FACTOR





Average roughness:

Standard Deviation roughness
or root mean square (RMS) roughness:

Peak-to-valley roughness: 𝑅𝑡 = max(𝑦) − min(𝑦)

𝐿: sample length L
𝑦(𝑥): surface deviation from the reference line

(nominal surface)

𝑅𝑎 =
1

𝐿
න
0

𝐿

𝑦 𝑥 𝑑𝑥

𝑅𝑞 =
1

𝐿
න
0

𝐿

𝑦 𝑥 2𝑑𝑥

LUBRICATION REGIMES

ROUGHNESS CALCULATION



Low speeds and high loads → Low Sommerfeld number    → high coefficient of friction (boundary lubrication)

High speeds and low loads → High Sommerfeld number    → the c.o.f. comes back to increase (full film lubrication)

LUBRICATION REGIMES

DIMENSIONLESS NUMBER



Analytical derivation of Reynolds equation

THE REYNOLDS’ EQUATION



Hypotheses:

1. The flow is only along the 𝑥-direction, i.e. 
speed 𝑣 = 0, 𝑤 → 0 (negligible)

2. Flow is laminar

3. Inertia forces are negligible with respect to 
viscous forces

4. Speed u is independent of y-coordinate (1D)

Let us consider two rigid surfaces separated by a lubricant fluid.

ℎ(𝑥): clearance
ℎ0: mean clearance
𝑙0: characteristic length

Where:

𝑢: speed of lubricant along 𝑥 direction
𝑣: speed of lubricant along 𝑦 direction
𝑤: speed of lubricant along 𝑧 direction

1D REYNOLDS’ EQUATION



𝜕𝑝

𝜕𝑥
Δ𝑥 Δ𝑧 =

𝜕𝜏𝑧𝑥
𝜕𝑧

Δ𝑧 Δ𝑥Equilibrium along x:

𝜕𝑝

𝜕𝑧
Δ𝑧 Δ𝑥 =

𝜕𝜏𝑥𝑧
𝜕𝑥

Δ𝑥 Δ𝑧Equilibrium along z:

Rotation in plane xz: 𝜏𝑧𝑥Δ𝑥 Δ𝑧 = 𝜏𝑥𝑧 Δ𝑧Δ𝑥

𝜕𝑝

𝜕𝑥
=
𝜕𝜏𝑧𝑥
𝜕𝑧

(1)

𝜕𝑝

𝜕𝑧
=
𝜕𝜏𝑥𝑧
𝜕𝑥

(2)

𝜏𝑧𝑥 = 𝜏𝑥𝑧 (3)

1D REYNOLDS’ EQUATION

MOMENTUM EQUATIONS OF THE FLUID ELEMENT



1D REYNOLDS’ EQUATION

SHEAR STRESS VS SHEAR RATE

• The behaviour of solids is (shear) strain-dependent

• The behaviour of liquids is shear rate-dependent

𝜏 = 𝜇 ሶ𝛾

ሶ𝛾𝑧𝑥 =
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥

𝜏𝑧𝑥 = 𝜏𝑥z = 𝜇
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥

Newtonian fluid

NB: 𝜇 has constant value in space 
and time for Newtonian fluids

σ = 𝐸𝜀Elastic material 

𝜏 = 𝐺𝛾 𝛾𝑧𝑥 =
𝜕𝑥

𝜕𝑧
+
𝜕z

𝜕𝑥



Equation (1) turns into 
𝜕𝑝

𝜕𝑥
=
𝜕𝜏𝑧𝑥
𝜕𝑧

Integrating along z: න
𝜕2𝑢

𝜕𝑧2
𝑑𝑧 =

1

𝜇
න
𝜕𝑝

𝜕𝑥
𝑑𝑧 𝑢 =

1

2𝜇

𝜕𝑝

𝜕𝑥
𝑧2 + 𝑐1𝑧 + 𝑐2

Equation (2) turns into 

p does not vary across 
the z-direction

𝜕𝑝

𝜕𝑥
= 𝜇

𝜕2𝑢

𝜕𝑧2

1D REYNOLDS’ EQUATION

Hypotheses:

5. Thin film

6. Viscous, Newtonian fluid 𝜏𝑧𝑥 = 𝜏𝑧𝑥 = 𝜇
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
≅ 𝜇

𝜕𝑢

𝜕𝑧

ℎ0
𝑙0

≪ 1,
𝜕𝑤

𝜕𝑥
,
𝜕𝑢

𝜕𝑥
≪

𝜕𝑢

𝜕𝑧

𝜕𝑝

𝜕𝑧
=
𝜕𝜏𝑥𝑧
𝜕𝑥

=
𝜕

𝜕𝑥
𝜇
𝜕𝑢

𝜕𝑧
=

𝜕

𝜕𝑧
𝜇
𝜕𝑢

𝜕𝑥
→ 0

𝑝 = 𝑝 𝑥



Boundary conditions for the speed:

ቊ
𝑢 𝑧 = ℎ = 𝑢a
𝑢 𝑧 = 0 = 𝑢b

Constants 𝑐1 and 𝑐2 are determined:

Boundary conditions for pressure:

𝑝 = 𝑝𝑎 in the input and output sectionsቊ
𝑤 𝑧 = ℎ = 𝑤a

𝑤 𝑧 = 0 = 𝑤b

1D REYNOLDS’ EQUATION

BOUNDARY CONDITIONS

𝑢 =
1

2𝜇

𝜕𝑝

𝜕𝑥
𝑧2 − 𝑧ℎ + 𝑢𝑎

𝑧

ℎ
+ 𝑢𝑏 1 −

𝑧

ℎ

Parabolic (Poiseuille) 
term (pressure effect)

Linear (Couette) term 
(dragging effect)

𝜕𝑝

𝜕𝑥
< 0

𝜕𝑝

𝜕𝑥
> 0

𝑢𝑎

𝑢𝑏



Find the sign of the pressure derivative at the inlet and outlet section, and at an intermediate section of the thin film and plot 
the velocity distributions.

1D REYNOLDS’ EQUATION

EXERCISE 1

HINT: the volume flow is constant!

𝑢a = 0
𝑢b = +𝑈

𝑤a = 0
𝑤b = 0BCs:

• Suppose to measure ambient pressure
at the inlet and outlet sections:

• Plot also the pressure profile.

• Remember that volume flow is the integral of velocity:

𝑝 0 = 𝑝𝑎
𝑝 𝐿𝑥 = 𝑝𝑎

𝑢 =
1

2𝜇

𝜕𝑝

𝜕𝑥
𝑧2 −

1

2𝜇

𝜕𝑝

𝜕𝑥
𝑧ℎ +

𝑧

ℎ
𝑢𝑎 − 𝑢𝑏 + 𝑢𝑏

𝑢 = 𝑎𝑧2 − 𝑏𝑧 + c

𝑎 > 0

𝑎 < 0

z

u



Find the sign of the pressure derivative at the inlet and outlet section, and at an intermediate section of the thin film and plot 
the velocity distributions.

1D REYNOLDS’ EQUATION

EXERCISE 2

HINT: the volume flow is constant!

𝑢a = 0
𝑢b = +𝑈

𝑤a = 0
𝑤b = 0BCs:

• Suppose to measure ambient pressure
at the inlet and outlet sections:

• Plot also the pressure profile.

• Remember that volume flow is the integral of velocity:

𝑝 0 = 𝑝𝑎
𝑝 𝐿𝑥 = 𝑝𝑎

𝑢 =
1

2𝜇

𝜕𝑝

𝜕𝑥
𝑧2 −

1

2𝜇

𝜕𝑝

𝜕𝑥
𝑧ℎ +

𝑧

ℎ
𝑢𝑎 − 𝑢𝑏 + 𝑢𝑏

𝑢



Find the sign of the pressure derivative at the inlet and outlet section, and at an intermediate section of the thin film and plot 
the velocity distributions.

1D REYNOLDS’ EQUATION

EXERCISE 3

HINT: the volume flow is constant!

𝑢a = 0
𝑢b = +𝑈

𝑤a = 0
𝑤b = 0BCs:

U

h

z

x

Lx

• Suppose to measure ambient pressure
at the inlet and outlet sections:

• Plot also the pressure profile.

• Remember that volume flow is the integral of velocity:

𝑝 0 = 𝑝𝑎
𝑝 𝐿𝑥 = 𝑝𝑎

𝑢 =
1

2𝜇

𝜕𝑝

𝜕𝑥
𝑧2 −

1

2𝜇

𝜕𝑝

𝜕𝑥
𝑧ℎ +

𝑧

ℎ
𝑢𝑎 − 𝑢𝑏 + 𝑢𝑏



Find the sign of the pressure derivative at the inlet and outlet section, and at an intermediate section of the thin film and plot 
the velocity distributions.

1D REYNOLDS’ EQUATION

EXERCISE 4

HINT: the volume flow is constant!

𝑢a = 0
𝑢b = +𝑈

𝑤a = 0
𝑤b = 0BCs:

• Suppose to measure ambient pressure
at the inlet and outlet sections:

• Plot also the pressure profile.

• Remember that volume flow is the integral of velocity:

𝑝 0 = 𝑝𝑎
𝑝 𝐿𝑥 = 𝑝𝑎

𝑢 =
1

2𝜇

𝜕𝑝

𝜕𝑥
𝑧2 −

1

2𝜇

𝜕𝑝

𝜕𝑥
𝑧ℎ +

𝑧

ℎ
𝑢𝑎 − 𝑢𝑏 + 𝑢𝑏

U

h

z

x

Lx



The volume flow (per unit of length along the y-direction) is calculated integrating speed u along the z-direction:

𝑞𝑥 = න
0

ℎ

𝑢 𝑑𝑧 = −
ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
+
𝑢𝑎 + 𝑢𝑏

2
ℎ

Poiseuille flow
(pressure flow)

Couette flow 
(drag flow)

1D REYNOLDS’ EQUATION

VOLUME FLOW

𝑝 = 𝑝 𝑥

Convergent gap



Input mass flow: 𝜌𝑞𝑥∆𝑦

Output mass flow: 𝜌𝑞𝑥 +
𝜕 𝜌𝑞𝑥
𝜕𝑥

∆𝑥 ∆𝑦

ሶ𝑚 =
𝜕 𝜌ℎ

𝜕𝑡
∆𝑥∆𝑦Inner mass variation:

Continuity equation: 𝜌𝑞𝑥∆𝑦 − 𝜌𝑞𝑥 +
𝜕 𝜌𝑞𝑥
𝜕𝑥

∆𝑥 ∆𝑦 =
𝜕 𝜌ℎ

𝜕𝑡

Let’s consider an element of size ℎ∆𝑥∆𝑦 :

1D REYNOLDS’ EQUATION

MASS BALANCE

𝜕 𝜌ℎ

𝜕𝑡
= 𝜌

𝜕ℎ

𝜕𝑡
+ ℎ

𝜕𝜌

𝜕𝑡

−
𝜕 𝜌𝑞𝑥
𝜕𝑥

= 𝜌
𝜕ℎ

𝜕𝑡
+ ℎ

𝜕𝜌

𝜕𝑡

CompressibilityGap variations



As the surfaces have speeds also along z direction, the derivative of the film thickness depends on:
• the components wa and wb

• the inclination 
𝜕ℎ

𝜕𝑥
of the upper surface

Due to the translation along the x-direction of the 
upper surface, the upper volume ABCD here below 
indicated is subtracted:

∆𝑉 = 𝐴𝑟𝑒𝑎 𝐴𝐵𝐶𝐷 Δ𝑦 =

= 𝐴𝑟𝑒𝑎 𝐴𝐵𝐸𝐹 Δ𝑦 = 𝑢𝑎Δ𝑡
𝜕ℎ

𝜕𝑥
Δ𝑥Δ𝑦

Due to the speed w along the z-direction of the 
walls, the volume increases of quantity

∆𝑉 = 𝑤𝑎 −𝑤𝑏 Δ𝑡Δ𝑥Δ𝑦

1D REYNOLDS’ EQUATION

MASS BALANCE – EFFECT OF GAP VARIATION



∆𝑉

Δ𝑡Δ𝑥Δ𝑦
→

𝜕ℎ

𝜕𝑡
= 𝑤𝑎 − 𝑤𝑏 − 𝑢𝑎

𝜕ℎ

𝜕𝑥

wedge effectsqueeze effect

−
𝜕 𝜌𝑞𝑥
𝜕𝑥

= 𝜌 𝑤𝑎 − 𝑤𝑏 − 𝑢𝑎
𝜕ℎ

𝜕𝑥
+ ℎ

𝜕𝜌

𝜕𝑡
Continuity equation:

𝑞𝑥 = −
ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
+
𝑢𝑎 + 𝑢𝑏

2
ℎVolume flow per unit 

length

1D Reynolds equation
(1D RE)

1D REYNOLDS’ EQUATION

DIFFERENTIAL (OR LOCAL) FORM

𝜕

𝜕𝑥

𝜌ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
−

𝜕

𝜕𝑥
𝜌ℎ

𝑢𝑎 + 𝑢𝑏
2

− 𝜌 𝑤𝑎 − 𝑤𝑏 − 𝑢𝑎
𝜕ℎ

𝜕𝑥
− ℎ

𝜕𝜌

𝜕𝑡
= 0

Poiseuille flow
(pressure flow)

Couette flow 
(drag flow)

Squeeze flow Compressibility



Boundary conditions for the speed: ቊ
𝑢 𝑧 = ℎ = 𝑢a
𝑢 𝑧 = 0 = 𝑢b

ቊ
𝑤 𝑧 = ℎ = 𝑤a

𝑤 𝑧 = 0 = 𝑤b
ቊ
𝑣 𝑧 = ℎ = 𝑣𝑎
𝑣 𝑧 = 0 = 𝑣b

𝜕

𝜕𝑥

𝜌ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑦

𝜌ℎ3

12𝜇

𝜕𝑝

𝜕𝑦
−

𝜕

𝜕𝑥
𝜌ℎ

𝑢𝑎 + 𝑢𝑏
2

−
𝜕

𝜕𝑦
𝜌ℎ

𝑣𝑎 + 𝑣𝑏
2

− 𝜌 𝑤𝑎 − 𝑤𝑏 − 𝑢𝑎
𝜕ℎ

𝜕𝑥
− 𝑣𝑎

𝜕ℎ

𝜕𝑦
− ℎ

𝜕𝜌

𝜕𝑡
= 0

2D REYNOLDS’ EQUATION

DIFFERENTIAL (OR LOCAL) FORM

2D Reynolds equation (2D RE)

2D Thin film

Viscous, Newtonian fluid

2D volume flow

𝜏𝑧𝑥 = 𝜇
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
≅ 𝜇

𝜕𝑢

𝜕𝑧
𝜏𝑧𝑦 = 𝜇

𝜕v

𝜕𝑧
+
𝜕𝑤

𝜕y
≅ 𝜇

𝜕v

𝜕𝑧

ℎ0
𝑙0

≪ 1, →
𝜕𝑤

𝜕𝑥
,
𝜕𝑢

𝜕𝑥
≪

𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑦
,
𝜕𝑣

𝜕𝑦
≪

𝜕𝑣

𝜕𝑧

𝑞𝑥 = න
0

ℎ

𝑢 𝑑𝑧 = −
ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
+
𝑢𝑎 + 𝑢𝑏

2
ℎ 𝑞𝑦 = න

0

ℎ

𝑣 𝑑𝑧 = −
ℎ3

12𝜇

𝜕𝑝

𝜕𝑦
+
𝑣𝑎 + 𝑣𝑏

2
ℎ



Analytical & numerical solution of simple cases

• 1D hydrodynamic slider
• 1D slider with normal squeeze motion
• 1D slider, hydrostatic effect

Numerical solution of simple cases

• Lubricated cylinder on plane
• Journal bearing with infinite length
• 2D hydrodynamic slider

SOLUTION OF SIMPLE CASES



𝜕

𝜕𝑥
ℎ3

𝜕𝑝

𝜕𝑥
+ 6𝜇𝑈

𝜕ℎ

𝜕𝑥
= 0

Integrating twice: 𝑝 𝑥 = 𝑝𝑎 − 6𝜇𝑈න
0

𝑥 𝑑𝑥

ℎ2
+ 𝑐න

0

𝑥 𝑑𝑥

ℎ3

where the constant c is calculated 
when 𝑝 𝐿𝑥 = 𝑝𝑎 is known:

𝑐 = 6𝜇𝑈
0׬
𝐿𝑥 1
ℎ2

𝑑𝑥

0׬
𝐿𝑥 1
ℎ3

𝑑𝑥
= 6𝜇𝑈ℎ0

SOLUTION OF SIMPLE CASES

1D HYDRODYNAMIC SLIDER

Lx

ℎ(x)
𝑈

z

x

Generic profile h(x)

a

b

Incompressible fluid (𝝆 is constant)

First integration step:
𝜕𝑝

𝜕𝑥
= −

6𝜇𝑈

ℎ2
+

𝑐

ℎ3

𝑢a = 0
𝑢b = −𝑈BCs:

𝑝 0 = 𝑝𝑎
𝑝 𝐿𝑥 = 𝑝𝑎



𝑝 𝑥 = 𝑝𝑎 − 6𝜇𝑈න
0

𝑥 𝑑𝑥

ℎ2
+ 6𝜇𝑈ℎ0න

0

𝑥 𝑑𝑥

ℎ3

𝜕𝑝

𝜕𝑥
= −

6𝜇𝑈

ℎ2
1 −

ℎ0
ℎ

=
6𝜇𝑈

ℎ2
ℎ0 − ℎ

ℎ

ℎ > ℎ0
𝜕𝑝

𝜕𝑥
< 0

ℎ < ℎ0
𝜕𝑝

𝜕𝑥
> 0

From this expression, it is evident that when

ℎ = ℎ0
𝜕𝑝

𝜕𝑥
= 0

To have pressure generation it is needed:

• Viscosity ≠ 0

• Speed U ≠ 0

• Gap gradient
𝑑ℎ

𝑑𝑥
≠ 0

For the mass conservation, the 
lubricant flow 𝑞𝑥 is constant along 
the x direction:

𝑞𝑥 = −
𝑈

2
ℎ0

SOLUTION OF SIMPLE CASES

1D HYDRODYNAMIC SLIDER

Lx

ℎ(x)
𝑈

z

x

Generic profile h(x)



ℎ = ℎ𝑚𝑖𝑛 1 +
ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛

𝐿𝑥

𝑥

ℎ𝑚𝑖𝑛
= ℎ𝑚𝑖𝑛 1 + 𝑚

𝑥

𝐿𝑥

න
0

𝐿𝑥 1

ℎ2
𝑑𝑥 =

𝐿𝑥

ℎ𝑚𝑖𝑛
2 ∙

1

1 + 𝑚
,

Let us calculate the expression of h0:

න
0

𝐿𝑥 1

ℎ3
𝑑𝑥 =

− Τ𝐿𝑥 𝑚

2ℎ𝑚𝑖𝑛
3

1

1 + 𝑚 2 − 1

ℎ0 =
0׬
𝐿𝑥 1
ℎ2

𝑑𝑥

0׬
𝐿𝑥 1
ℎ3

𝑑𝑥
=
2ℎ𝑚𝑖𝑛

2 +𝑚
1 +𝑚 Film thickness at which we have the maximum of pressure

𝑠𝑙𝑜𝑝𝑒 =
ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛

𝐿𝑥
=
𝑚 ∙ ℎ𝑚𝑖𝑛

𝐿𝑥
𝑚 =

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛

ℎ𝑚𝑖𝑛

SOLUTION OF SIMPLE CASES

LINEAR PROFILE SLIDER

𝑢a = 0
𝑢b = −𝑈BCs:

𝑝 0 = 𝑝𝑎
𝑝 𝐿𝑥 = 𝑝𝑎

U

xz

hmin
hmax

Lx

a

b



Integrating once:

𝑝 − 𝑝𝑎 =
Τ𝐿𝑥 𝑚

ℎ𝑚𝑖𝑛
2 6𝜇𝑈

−𝑚
𝑥
𝐿𝑥

1 + 𝑚
𝑥
𝐿𝑥

−
1 +𝑚

2 +𝑚

1

1 + 𝑚
𝑥
𝐿𝑥

2 − 1

hmin = 20 m

hmax = 40 m

Lx = 30 mm

U = 1 m/s

 = 0.15 Pa∙s

𝑝 − 𝑝𝑎 = −
6𝜇𝑈

ℎ𝑚𝑖𝑛
2

𝑥

1 + 𝑚
𝑥
𝐿𝑥

1 −

1 + 𝑚
2 + 𝑚 2 +𝑚

𝑥
𝐿𝑥

1 +𝑚
𝑥
𝐿𝑥

SOLUTION OF SIMPLE CASES

LINEAR PROFILE SLIDER - II

𝜕𝑝

𝜕𝑥
= −

6𝜇𝑈

ℎ2
1 −

ℎ0
ℎ

=
6𝜇𝑈

ℎ2
ℎ0 − ℎ

ℎ



Discretization of the 1D Reynolds equation with 

finite difference method (FDM):

อ
1

12𝜇

𝑑𝑝

𝑑𝑥
ℎ3 +

𝑈ℎ

2
𝑖+ Τ1 2

= อ
1

12𝜇

𝑑𝑝

𝑑𝑥
ℎ3 +

𝑈ℎ

2
𝑖− Τ1 2

1

12𝜇
∙ ቤ
∆𝑝

∆𝑥
𝑖+
1
2

ℎ
𝑖+
1
2

3 +
𝑈

2
ℎ
𝑖+
1
2
−

1

12𝜇
ቤ

∆𝑝

∆𝑥
𝑖−
1
2

ℎ
𝑖−
1
2

3 +
𝑈

2
ℎ
𝑖−
1
2
= 0

SOLUTION OF SIMPLE CASES

1D HYDRODYNAMIC SLIDER, NUMERICAL SOLUTION

N+2 nodes along x direction, from i = 0 to i = N+1

x

1

12𝜇

𝑝𝑖+1 − 𝑝𝑖
∆𝑥

ℎ
𝑖+
1
2

3 +
𝑈

2
ℎ
𝑖+
1
2
−

1

12𝜇

𝑝𝑖 − 𝑝𝑖−1
∆𝑥

ℎ
𝑖−
1
2

3 +
𝑈

2
ℎ
𝑖−
1
2
= 0

NB: p gradient is 
always estimated at 
mid-points!

The flow is evaluated 
at the boundaries of 
the control volume

ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
+
𝑈ℎ

2
= 𝑐𝑜𝑠𝑡



𝑝𝑖=0 = 𝑝𝑎

𝑝𝑖=𝑁+1 = 𝑝𝑎

i = 0 i = 1
i = N i = N+1

𝑝𝑖−1

ℎ
𝑖−
1
2

3

∆𝑥
− 𝑝𝑖

ℎ
𝑖−
1
2

3 + ℎ
𝑖+
1
2

3

∆𝑥
+ 𝑝𝑖+1

ℎ
𝑖+
1
2

3

∆𝑥
= −12𝜇

𝑈

2
ℎ
𝑖+
1
2
− ℎ

𝑖−
1
2

There results in N linear algebraic 

equations in N variables:

𝐴𝑖,𝑖−1𝑝𝑖−1 + 𝐴𝑖,𝑖𝑝𝑖 + 𝐴𝑖,𝑖+1𝑝𝑖+1 = 𝑏𝑖In matrix form: 𝑨𝒑 = 𝒃

𝐴𝑖,𝑖−1 =
1

2

ℎ𝑖−1
3 + ℎ𝑖

3

∆𝑥

𝐴𝑖,𝑖 = −
1

2

ℎ𝑖−1
3 + 2ℎ𝑖

3 + ℎ𝑖+1
3

∆𝑥

𝐴𝑖,𝑖+1 =
1

2

ℎ𝑖
3 + ℎ𝑖+1

3

∆𝑥

𝑏𝑖 = −
12𝜇𝑈

4
ℎ𝑖+1 − ℎ𝑖−1

SOLUTION OF SIMPLE CASES

1D HYDRODYNAMIC SLIDER, NUMERICAL SOLUTION

∈ 𝑏1 𝑖𝑓 𝑖 = 1 ∈ 𝑏𝑁 𝑖𝑓 𝑖 = 𝑁NB:

BCs:



1

12𝜇∆𝑥

− ℎ1
2

3 + ℎ3
2

3 ℎ3
2

3 0

⋱ ⋱ ⋱

…
⋱ ⋱

0 ℎ
𝑖−
1
2

3 − ℎ
𝑖−
1
2

3 + ℎ
𝑖+
1
2

3

⋱
0

ℎ
𝑖+
1
2

3 0

⋱ ⋱

ℎ
𝑁−

1
2

3 − ℎ
𝑁−

1
2

3 + ℎ
𝑁+

1
2

3

𝑝1
𝑝2
⋮
𝑝𝑖
⋮
𝑝𝑁

=
−𝑈

2

ℎ3
2
− ℎ1

2

⋮
ℎ
𝑖+
1
2
− ℎ

𝑖−
1
2

⋮
ℎ
𝑁+

1
2
− ℎ

𝑁−
1
2

−
𝑝𝑎

12𝜇∆𝑥

ℎ1
2

3

0
⋮
0

ℎ
𝑁+

1
2

3

𝒑 = 𝑨\𝒃Direct solving method:

N=20N=10

SOLUTION OF SIMPLE CASES

1D HYDRODYNAMIC SLIDER, NUMERICAL SOLUTION



SOLUTION OF SIMPLE CASES

ASSIGNMENT A1

IMPLEMENT A MATLAB SCRIPT THAT SOLVES THE 1D HYDRODYNAMIC SLIDER 
SYSTEM AND OBTAINS THE PRESSURE DISTRIBUTION INTO THE GAP.

COMPARE IT WITH THE ANALYTIC SOLUTION

%% Clear workspace and 

variables

clear all

close all

clc

%% Preprocessing

% Introducing variables

pa = 1e5;       %Pa

mu = 150e-3;    %Pa*s viscosity

hmin = 20e-6;   %m

hmax = 40e-6;   %m

L = 30e-3;      %m

U = 1;          %m/s

N = ...;         %n. of internal nodes

% Discretization

x = ...;  %nodes position

deltax = ...;

gap = ...;

h = ...; % internal nodes

...



Analytical & numerical solution of simple cases

• 1D hydrodynamic slider
• 1D slider with normal squeeze motion
• 1D slider, hydrostatic effect

Numerical solution of simple cases

• Lubricated cylinder on plane
• Journal bearing with infinite length
• 2D hydrodynamic slider

SOLUTION OF SIMPLE CASES



NB: h constant along the x-direction!
No tilting of the pad is considered

𝑝 = −
6𝜇𝑊

ℎ3
𝑥2 + c1𝑥 + c2

𝑑𝑝

𝑑𝑥
= −

12𝜇𝑊

ℎ3
𝑥 + c1

SOLUTION OF SIMPLE CASES

1D SLIDER, NORMAL SQUEEZE MOTION

𝑢a = 0
𝑢b = 0BCs:

𝑝 0 = 𝑝𝑎
𝑝 𝐿𝑥 = 𝑝𝑎

𝑊 = − ሶℎ

xz

h

Lx

a

b

𝜕

𝜕𝑥

𝜌ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
−

𝜕

𝜕𝑥
𝜌ℎ

𝑢𝑎 + 𝑢𝑏
2

− 𝜌
𝜕ℎ

𝜕𝑡
− ℎ

𝜕𝜌

𝜕𝑡
= 0

Incompressible fluid (𝝆 is constant)



𝑞𝑥 = න
0

ℎ

𝑢 𝑑𝑧 = −
ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
+
𝑢𝑎 + 𝑢𝑏

2
ℎ

𝑞𝑥 = −
𝑊

2
𝐿𝑥 − 2𝑥

h=20mm

Lx=30mm

W=0.1mm/s

m=0.15Pa∙s

Example with:

SOLUTION OF SIMPLE CASES

1D SLIDER, NORMAL SQUEEZE MOTION

𝑝 =
6𝜇𝑊

ℎ3
𝑥 𝐿𝑥 − 𝑥 + 𝑝𝑎

𝑑𝑝

𝑑𝑥
=
6𝜇𝑊

ℎ3
𝐿𝑥 − 2𝑥

Boundary conditions:

𝑝 0 = 𝑐2 = 𝑝𝑎 𝑝 𝐿𝑥 = −
6𝜇𝑊

ℎ3
𝐿𝑥

2 + c1𝐿𝑥 + 𝑝𝑎 = 𝑝𝑎

Volume flow:



SOLUTION OF SIMPLE CASES

ASSIGNMENT A2

DERIVE THE DISCRTE FORM OF THE REYNOLDS EQUATION AND IMPLEMENT A 
MATLAB SCRIPT THAT SOLVES THE 1D SLIDER WITH SQUEEZE MOTION AND 

OBTAINS THE PRESSURE DISTRIBUTION INTO THE GAP.

COMPARE WITH THE ANALYTIC SOLUTION

%% Clear workspace and 

variables

clear all

close all

clc

%% Preprocessing

% Introducing variables

pa = 1e5;       %Pa

mu = 150e-3;    %Pa*s viscosity

W = -0.1e-3;     %m

L = 30e-3;      %m

N = ...;         %n. of internal nodes

h = 80 e-6;     %m

% Discretization

x = ...;       %nodes position

deltax = ...;

...



Analytical & numerical solution of simple cases

• 1D hydrodynamic slider
• 1D slider with normal squeeze motion
• 1D slider, hydrostatic effect

Numerical solution of simple cases

• Lubricated cylinder on plane
• Journal bearing with infinite length
• 2D hydrodynamic slider

SOLUTION OF SIMPLE CASES



𝑝 = 𝑝𝑎 + 𝑝0 − 𝑝𝑎 1 −
2𝑥

𝐿𝑥

𝑞𝑥 =
ℎ3

12𝜇

2

𝐿𝑥
𝑝0 − 𝑝𝑎

SOLUTION OF SIMPLE CASES

1D SLIDER, HYDROSTATIC EFFECT

𝜕

𝜕𝑥

𝜌ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
−

𝜕

𝜕𝑥
𝜌ℎ

𝑢𝑎 + 𝑢𝑏
2

− 𝜌
𝜕ℎ

𝜕𝑡
− ℎ

𝜕𝜌

𝜕𝑡
= 0

Incompressible fluid (𝝆 is constant)
Pressure drop into the inlet channel is neglected

𝑢a = 0
𝑢b = 0BCs:

𝑝 0 = 𝑝𝑎
𝑝 𝐿𝑥 = 𝑝𝑎
𝑝 𝐿𝑥/2 = 𝑝0

a

b

To have pressure generation a pump is used that can provide:

• Constant flow

• Constant inlet pressure 

Inlet channel



Analytical & numerical solution of simple cases

• 1D hydrodynamic slider
• 1D slider with normal squeeze motion
• 1D slider, hydrostatic effect

Numerical solution of simple cases

• Lubricated cylinder on plane
• Journal bearing with infinite length
• 2D hydrodynamic slider

SOLUTION OF SIMPLE CASES



Hypotheses:

• Both cylinder and plane are rigid → rigid-hydrodynamic problem

• The cylinder rotates but its centre is fixed in space

• The plane is moving rightwards with speed U

• Distance h0 is given

• Incompressible fluid → but no cavitation

• Infinite cylinder length

Which BCs to be used?

SOLUTION OF SIMPLE CASES

LUBRICATED CYLINDER ON PLANE

𝑢a,t = 𝜔𝑅
𝑢b = 𝑈BCs:

𝑝 ? = 𝑝𝑎

U

h0



R

a

b

xz

x

Ua,t



Types of boundary conditions:

• Dirichlet: pressure is known 

𝑝(𝑥𝑚𝑖𝑛) = 𝑝𝑎;     𝑝(𝑥𝑚𝑎𝑥) = 𝑝𝑎

• Neumann: pressure gradient is known

𝑑𝑝

𝑑𝑥
𝑥𝑚𝑎𝑥 = 0

• Robin: A combination of pressure and pressure gradient is known

𝑎𝑝 𝑥𝑚𝑎𝑥 + 𝑏
𝑑𝑝

𝑑𝑥
𝑥𝑚𝑎𝑥 = 0

SOLUTION OF SIMPLE CASES

LUBRICATED CYLINDER ON PLANE

U

h0



R

a

b

xz

x
xmin xmax



𝜕

𝜕𝑥

ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
−

𝜕

𝜕𝑥
ℎ
𝑢𝑎 + 𝑢𝑏

2
= 0

3ℎ2
𝜕ℎ

𝜕𝑥

𝜕𝑝

𝜕𝑥
+ ℎ3

𝜕2𝑝

𝜕𝑥2
= 12𝜇

𝜕ℎ

𝜕𝑥
∙
𝑢𝑎 + 𝑢𝑏

2
+ 12𝜇

ℎ

2

𝜕𝑢𝑎
𝜕𝑥

+ 12𝜇
ℎ

2

𝜕𝑢𝑏
𝜕𝑥

𝑐
𝜕𝑝

𝜕𝑥
+ 𝑎

𝜕2𝑝

𝜕𝑥2
= 𝑒

ℎ = ℎ0 + 𝑅 1 − cos 𝜗Film thickness: 𝑥 = 𝑅 sin 𝜗

ℎ 𝑥 = ℎ0 + 𝑅 1 − 1 −
𝑥2

𝑅2
= ℎ0 + 𝑅 − 𝑅2 − 𝑥2

SOLUTION OF SIMPLE CASES

LUBRICATED CYLINDER ON PLANE

U

h0



R

a

b

xz

x

𝜗

cos𝜗2 + sin 𝜗2 = 1

𝜕ℎ

𝜕𝑥
=

𝑥

𝑅2 − 𝑥2

1D Reynolds equation:



Angles 𝜗max 1 and 𝜗max 2 can be 
defined for the boundary conditions:

𝑥𝑚𝑖𝑛 = −𝑅 sin 𝜗max 1

𝑥𝑚𝑎𝑥 = 𝑅 sin 𝜗max 2

SOLUTION OF SIMPLE CASES

LUBRICATED CYLINDER ON PLANE

U

h0



R

a

b

xz

x

𝜗

𝜗max 1 𝜗max 2

xmin xmax

x

𝑢𝑎 = 𝜔𝑅 cos 𝜗 = 𝜔 𝑅2 − 𝑥2
𝜕𝑢𝑎
𝜕𝑥

= −
𝜔𝑥

𝑅2 − 𝑥2
BCs:

𝑝 𝑥𝑚𝑖𝑛 = 𝑝𝑎

𝑝 𝑥𝑚𝑎𝑥 = 𝑝𝑎

𝑢𝑏 = 𝑈
Component of speed of the upper cylinder 
along the x-direction



Discrete form: 𝑐𝑖
𝑝𝑖+1 − 𝑝𝑖−1

2∆x
+ 𝑎𝑖

𝑝𝑖+1 − 2𝑝𝑖 + 𝑝𝑖−1
∆x2

= 𝑒𝑖

𝑒𝑖 = อ12𝜇
𝑢𝑎 + 𝑢𝑏

2

𝜕ℎ

𝜕𝑥
+
ℎ

2

𝜕𝑢𝑎
𝜕𝑥

𝑖

= 12𝜇
𝑈 + 𝜔𝑅 cos 𝜗

2

𝑥

𝑅2 − 𝑥2
−
ℎ

2

𝜔𝑥

𝑅2 − 𝑥2

= 12𝜇
𝑈 + 𝜔 𝑅2 − 𝑥2

2

𝑥

𝑅2 − 𝑥2
−
ℎ0 + 𝑅 − 𝑅2 − 𝑥2

2

𝜔𝑥

𝑅2 − 𝑥2
=

𝑝𝑖−1
𝑎𝑖
∆𝑥2

−
𝑐𝑖
2∆𝑥

− 2𝑝𝑖
𝑎𝑖
∆𝑥2

+ 𝑝𝑖+1
𝑎𝑖
∆𝑥2

+
𝑐𝑖
2∆𝑥

= 𝑒𝑖

= 12𝜇
𝑈𝑥

2 𝑅2 − 𝑥2
+
𝜔𝑥

2
−
ℎ0 + 𝑅

2

𝜔𝑥

𝑅2 − 𝑥2
+
𝜔𝑥

2
= 12𝜇

𝑈 − ℎ0 + 𝑅 𝜔

2 𝑅2 − 𝑥𝑖
2

𝑥𝑖 + 𝜔𝑥𝑖

SOLUTION OF SIMPLE CASES

LUBRICATED CYLINDER ON PLANE

𝑐
𝜕𝑝

𝜕𝑥
+ 𝑎

𝜕2𝑝

𝜕𝑥2
= 𝑒

𝑎𝑖 = ℎ𝑖
3

𝑐𝑖 = 3ℎ𝑖
2 ቤ
∆ℎ

∆𝑥
𝑖

= 3ℎ𝑖
2

ℎ
𝑖+
1
2
− ℎ

𝑖−
1
2

∆𝑥

= 3ℎ𝑖
2 𝑥i

𝑅2 − 𝑥i
2

Coefficients read as follows:



Let us find a solution in order to avoid negative relative 
pressure→ cavitation does not appear by hypothesis

SOLUTION OF SIMPLE CASES

LUBRICATED CYLINDER ON PLANE

BCs: 𝑝 𝑥𝑚𝑖𝑛 =? = 𝑝𝑎

𝑝 𝑥𝑚𝑎𝑥 =? = 𝑝𝑎

ቤ
𝜕𝑝

𝜕𝑥
𝑥max 2=?

= 0

If 𝜗max 1 (i.e. 𝑥𝑚𝑎𝑥 ) is given one can look for 

𝜗max 2 iteratively, in order to get 𝑝 𝜗max 2 = 𝑝𝑎

and  ቚ
𝜕𝑝

𝜕𝑥 𝜗max 2

= 0 at the output section. 

W = 0.1 mm/s
H = 20 mm
R = 20 mm
U = 1 m/s
μ = 0.15 Pa∙s
Ω = 1000 rpm

Example with:
𝜗max 1 = 10°

𝜗max 2 = 1.2°

Iterations provide:

Let us determine 
suitably tuned 
boundaries of the 
domain with 
consistent BCs 

xmin xmax

ቤ
𝜕𝑝

𝜕𝑥
𝜗max 2

= 0



Results are compared changing 𝜗max 1, 
with constant 𝜗max 2 = 1.2°

When 𝜗max 1 is increased, the pressure distribution 
changes just a little, as it is very low when h is large

SOLUTION OF SIMPLE CASES

LUBRICATED CYLINDER ON PLANE

Notice that the solution with 𝜗max 1 = 𝜗max 2 is 
antisymmetrical and the first part coincide with the 
solution of 𝜗max 2 = 0°

Results are compared changing 𝜗max 2, 
with constant 𝜗max 1 = 10°

NB: it is recommended not 
to exceed 𝜗max 1 = 10° as 
the hypothesis of Reynolds 
equation is thin film, i.e. 
h/R<<1



SOLUTION OF SIMPLE CASES

ASSIGNEMENT B

IMPLEMENT A MATLAB SCRIPT TO SOLVE THE STEADY STATE SOLUTION AND OBTAINS THE 
PRESSURE DISTRIBUTION INTO THE GAP.

THE SOLUTION HAS TO BE FOUND ITERATIVELY BY ITERATING ON THE INLET AND OUTLET ANGLES

%% Clear workspace and 

variables

clear all

close all

clc

%% Preprocessing

%Introducing variables

pa = 1e5;       %Pa

mu = 150e-3;    %Pa*s viscosity

h0 = 20e-6;     %m minimum gap

R = 20e-3;      %m

U=1;            %m/s

omega = -10*U/R;    %rad/s

N = ...;        %n. of internal nodes

tetamax1 = ...;

xmin = -...;

% Iterative discretization

tetamax2 = ...;

xmax = ...;

x = ...

x_r = ...; %internal nodes

deltax = ...

h = ...;    %N elements

dhdx = ;  %N elements

...

%Iterative solver

...



Analytical & numerical solution of simple cases

• 1D hydrodynamic slider
• 1D slider with normal squeeze motion
• 1D slider, hydrostatic effect

Numerical solution of simple cases

• Lubricated cylinder on plane
• Journal bearing with infinite length
• 2D hydrodynamic slider

SOLUTION OF SIMPLE CASES



𝜕

𝑟𝜕𝜗

ℎ3

12𝜇

𝜕𝑝

𝑟𝜕𝜗
+
𝜔𝑟

2
ℎ = 0

At the lubricant supply port pressure 
p* is assumed to be known

SOLUTION OF SIMPLE CASES

INFINITE LENGTH JOURNAL BEARING

Film thickness in polar coordinates:

1D RE in polar coordinates 𝑟, 𝜗 :

1. Shaft
2. Bushing
3. Oil supply port

R is 0.1% larger than r1 

The following hypotheses hold:

• The bushing fixed (𝑢𝑏=0, 𝑤𝑏=0)

• The center of the journal fixed 
(𝑤𝑎=0, 𝑢𝑎= 𝜔𝑟)

BCs: 𝑝 𝜗 = 𝛼 = 𝑝*

Incompressible fluid (𝝆 is constant)
No cavitation

𝜹

p*



NB: there exists the analytical solution! 



𝑅𝑟
𝑅𝑡

=ඵ𝑝
cos𝜗
sin 𝜗

𝑟𝑑𝜗𝑑𝑧

Radial (along the line of actions) and tangential (normal to the line of 
actions) bearing reaction components due to the pressure distribution:

In steady state conditions there is equilibrium between the external load F
applied on the shaft and the reaction force R exerted by the bearing.

Since the journal has infinite length, we can 
calculate the force f per unit of axial length:

𝑓𝑟
𝑓𝑡

= න
0

2𝜋

𝑝
cos 𝜗
sin 𝜗

𝑟𝑑𝜗

SOLUTION OF SIMPLE CASES

INFINITE LENGTH JOURNAL BEARING

𝜹

p*
 The effect of tangential stress 

due to friction is neglected



In order to simplify the numerical solution, without loss of generality we define a 
fixed reference system Oxy and assume the oil supply port to be aligned with 
horizontal axis x.

The external force is vertical. The attitude angle  and the eccentricity  are to be 
determined to have the equilibrium between the external force F and the journal 
reaction R.

ℎ 𝜗 = ℎ0 + 𝛿 cos 𝜗 − 𝛽 − 𝜋/2

1. Iteration for module of R→ given an attempt attitude angle , iterate the 
value of eccentricity  increasing it from a small value until the module of R
coincides with F

2. Iteration for direction of R → The attitude angle  is then changed and point 1 
is to be repeated to find the new eccentricity with the new angle

3. The final attitude angle is found when F is aligned with R.

𝑓𝑥
𝑓𝑦

= න
0

2𝜋

𝑝
cos 𝜗
sin 𝜗

𝑟𝑑𝜗

Force (per unit of length) 
components along x and y:
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F

R



Discretization:

𝜕

𝑟𝜕𝜗

ℎ3

12𝜇

𝜕𝑝

𝑟𝜕𝜗
+
𝜔𝑟

2
ℎ = 0

1

12𝜇

𝑝𝑖+1 − 𝑝𝑖
𝑟∆𝜗

ℎ
𝑖+
1
2

3 +
𝜔𝑟

2
ℎ
𝑖+
1
2
=

1

12𝜇

𝑝𝑖 − 𝑝𝑖−1
𝑟∆𝜗

ℎ
𝑖−
1
2

3 +
𝜔𝑟

2
ℎ
𝑖−
1
2

The problem is similar to the 1D hydrodynamic slider.
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p* large enough to avoid cavitation

There result N linear algebraic equations in N unknown variables

BCs: 𝑝 𝜗 = 0 = 𝑝 𝜗 = 2𝜋 = 𝑝*



SOLUTION OF SIMPLE CASES

ASSIGNEMENT C

IMPLEMENT A MATLAB SCRIPT TO SOLVE THE STEADY STATE SOLUTION AND 
OBTAINS THE PRESSURE DISTRIBUTION INTO THE JOURNAL BEARING.

THE SOLUTION HAS TO BE FOUND ITERATIVELY BY ITERATING ON ATTITUDE 
ANGLE AND ECCENTRICITY

%% Clear workspace and 

variables

clear all

close all

clc

%% Preprocessing

%Introducing variables

pa = 1e5;       %Pa ambient pressure

pstar = 20e5;   %Pa inlet pressure

mu = 150e-3;    % Pa*s

h0 = 200e-6;    % symmetric gap thickness

omega = 1000*2*pi/60;   %rad/s

R=30e-3;                %m

epsx = ...;

epsy = ...;

eps = ...;

fi = atan2(epsy,epsx);  %rad = beta + pi/2

N = ...;

%Discretization

teta =...; 

dteta = ...;

gap = ...;

h = ...; % internal nodes

%Solver

...



Analytical & numerical solution of simple cases

• 1D hydrodynamic slider
• 1D slider with normal squeeze motion
• 1D slider, hydrostatic effect

Numerical solution of simple cases

• Lubricated cylinder on plane
• Journal bearing with infinite length
• 2D hydrodynamic slider

SOLUTION OF SIMPLE CASES



ℎ 𝑥, 𝑦 = ℎ 𝑥 = ℎ𝑚𝑎𝑥 −
ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛

𝐿𝑥
𝑥

• Suppose a convergent gap along x and constant speed U along the 
x-direction.

• The speed V along the y-direction and W along the z-direction is 
supposed to be null and the gap is independent of the y-coordinate.

𝜕

𝜕𝑥

ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑦

ℎ3

12𝜇

𝜕𝑝

𝜕𝑦
−
𝑈

2

𝜕ℎ

𝜕𝑥
= 0
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𝑢a = 0
𝑢b = −𝑈
𝑣a = 0
𝑣b =0

BCs:
𝑝 0, 𝑦 = 𝑝𝑎
𝑝 𝐿𝑥, 𝑦 = 𝑝𝑎
𝑝 𝑥, 0 = 𝑝𝑎
𝑝 𝑥, 𝐿𝑦 = 𝑝𝑎

𝑤a = 0
𝑤b = 0

𝜕

𝜕𝑥

𝜌ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑦

𝜌ℎ3

12𝜇

𝜕𝑝

𝜕𝑦
−

𝜕

𝜕𝑥
𝜌ℎ

𝑢𝑎 + 𝑢𝑏
2

−
𝜕

𝜕𝑦
𝜌ℎ

𝑣𝑎 + 𝑣𝑏
2

− 𝜌 𝑤𝑎 − 𝑤𝑏 − 𝑢𝑎
𝜕ℎ

𝜕𝑥
− 𝑣𝑎

𝜕ℎ

𝜕𝑦
− ℎ

𝜕𝜌

𝜕𝑡
= 0

Incompressible fluid (𝝆 is constant)

x

z
y



Discretization 

of 2D RE

Finite difference discretization: central formulation

𝑑𝑝

𝑑𝑥
=
𝑝𝑖+1 − 𝑝𝑖−1

2Δ𝑥

𝑑2𝑝

𝑑𝑥2
=
𝑝𝑖+1 − 2𝑝𝑖 + 𝑝𝑖−1

Δ𝑥2

Let us start from the most general case with terms also along the y-direction:
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N+2 nodes along the x-direction, from i = 0 to i = N+1

M+2 nodes along the y-direction, from j = 0 to j = M+1

𝜕

𝜕𝑥
ℎ3

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑦
ℎ3

𝜕𝑝

𝜕𝑦
− 6𝜇𝑈

𝜕ℎ

𝜕𝑥
− 6𝜇𝑉

𝜕ℎ

𝜕𝑦
= 0



อ
1

12𝜇

𝑑𝑝

𝑑𝑥
ℎ3 −

𝑈ℎ

2
𝑖+
1
2,𝑗

− อ
1

12𝜇

𝑑𝑝

𝑑𝑥
ℎ3 −

𝑈ℎ

2
𝑖−
1
2,𝑗

อ+
1

12𝜇

𝑑𝑝

𝑑𝑦
ℎ3 −

𝑉ℎ

2
𝑖,𝑗+

1
2

− อ
1

12𝜇

𝑑𝑝

𝑑𝑦
ℎ3 −

𝑉ℎ

2
𝑖,𝑗−

1
2

= 0

5 points stencil

−𝑈

2
ℎ
𝑖+
1
2
+

1

12𝜇

𝑝𝑖+1 − 𝑝𝑖
∆𝑥

ℎ
𝑖+
1
2

3 +
𝑈

2
ℎ
𝑖−
1
2
−

1

12𝜇

𝑝𝑖 − 𝑝𝑖−1
∆𝑥

ℎ
𝑖−
1
2

3 −
𝑉

2
ℎ
𝑗+

1
2
+

1

12𝜇

𝑝𝑗+1 − 𝑝𝑗

∆𝑦
ℎ
𝑗+

1
2

3 +
𝑉

2
ℎ
𝑗−

1
2
−

1

12𝜇

𝑝𝑗 − 𝑝𝑗−1

∆𝑦
ℎ
𝑗−

1
2

3 = 0
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𝜕

𝜕𝑥

ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
−
𝑈

2
ℎ +

𝜕

𝜕𝑦

ℎ3

12𝜇

𝜕𝑝

𝜕𝑦
−
𝑉

2
ℎ = 0

Volume flow balance along 
the x-direction and y-direction

𝑞
𝑖+
1
2
,𝑗

𝑥 𝑞
𝑖−
1
2
,𝑗

𝑥
𝑞
𝑖,𝑗+

1
2

𝑦
𝑞
𝑖,𝑗−

1
2

𝑦



The equations can be written in a system using the lexicographic 
order; index k refers to the k-equation:

𝑘 = 𝑖 + 𝑗 − 1 𝑁
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1

12𝜇

ℎ𝑘−𝑁
3

∆𝑦
𝑝𝑘−𝑁 +

1

12𝜇

ℎ𝑘−1
3

∆𝑥
𝑝𝑘−1 −

1

12𝜇

ℎ𝑘+1
3

∆𝑥
+
ℎ𝑘−1
3

∆𝑥
+
ℎ𝑘+𝑁
3

∆𝑦
+
ℎ𝑘−𝑁
3

∆𝑦
𝑝𝑘

+
1

12𝜇

ℎ𝑘+1
3

∆𝑥
𝑝𝑘+1 +

1

12𝜇

ℎ𝑘+𝑁
3

∆𝑦
𝑝𝑘+𝑁 =

𝑈

2
ℎ𝑘+1 − ℎ𝑘−1

1

12𝜇

ℎ
𝑖,𝑗−

1
2

3

∆𝑦
𝑝𝑖,𝑗−1 +

1

12𝜇

ℎ
𝑖−
1
2
,𝑗

3

∆𝑥
𝑝𝑖−1,j −

1

12𝜇

ℎ
𝑖+
1
2
,𝑗

3

∆𝑥
+

ℎ
𝑖−
1
2
,𝑗

3

∆𝑥
+

ℎ
𝑖,𝑗+

1
2

3

∆𝑦
+

ℎ
𝑖,𝑗−

1
2

3

∆𝑦
𝑝𝑖,𝑗

+
1

12𝜇

ℎ
𝑖+
1
2
,𝑗

3

∆𝑥
𝑝𝑖+1,j +

1

12𝜇

ℎ
𝑖,𝑗+

1
2

3

∆𝑦
𝑝𝑖,𝑗+1 =

𝑈

2
ℎ
𝑖+
1
2
,𝑗
− ℎ

𝑖−
1
2
,𝑗

+
𝑉

2
ℎ
𝑖,𝑗+

1
2
− ℎ

𝑖,𝑗−
1
2

𝑘 ∈ 𝐼[1, (𝑁)(𝑀)]

𝐴𝑘,𝑘−𝑁𝑝𝑘−𝑁 + 𝐴𝑘,𝑘−1𝑝𝑘−1 + 𝐴𝑘,𝑘𝑝𝑘 + 𝐴𝑘,k+1𝑝𝑘+1 + 𝐴𝑘,𝑘+𝑁𝑝𝑘+𝑁 = 𝑏𝑘



The nodes adjacent to the borders with Dirichlet boundary conditions do not use all the stencil 
points as the pressure is known at the borders.

The terms in orange will move in the vector of known terms 𝑏𝑘
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1

12𝜇

ℎ𝑘−𝑁
3

∆𝑦
𝑝𝑎 +

1

12𝜇

ℎ𝑘−1
3

∆𝑥
𝑝𝑎 −

1

12𝜇

ℎ𝑘+1
3

∆𝑥
+
ℎ𝑘−1
3

∆𝑥
+
ℎ𝑘+𝑁
3

∆𝑦
+
ℎ𝑘−𝑁
3

∆𝑦
𝑝𝑘

+
1

12𝜇

ℎ𝑘+1
3

∆𝑥
𝑝𝑘+1 +

1

12𝜇

ℎ𝑘+𝑁
3

∆𝑦
𝑝𝑘+𝑁 =

𝑈

2
ℎ𝑘+1 − ℎ𝑘−1

For instance, in the case i = 1, j = 1 → k = 1 just three adjacent 
have unknown pressure level:



The nodes adjacent to the borders with Dirichlet boundary conditions do not use all the stencil 
points as the pressure is known at the borders.

The terms in orange will move in the vector of known terms 𝑏𝑘
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1

12𝜇

ℎ𝑘−𝑁
3

∆𝑦
𝑝𝑎 +

1

12𝜇

ℎ𝑘−1
3

∆𝑥
𝑝𝑘−1 −

1

12𝜇

ℎ𝑘+1
3

∆𝑥
+
ℎ𝑘−1
3

∆𝑥
+
ℎ𝑘+𝑁
3

∆𝑦
+
ℎ𝑘−𝑁
3

∆𝑦
𝑝𝑘

+
1

12𝜇

ℎ𝑘+1
3

∆𝑥
𝑝𝑘+1 +

1

12𝜇

ℎ𝑘+𝑁
3

∆𝑦
𝑝𝑘+𝑁 =

𝑈

2
ℎ𝑘+1 − ℎ𝑘−1

For instance, in the case i = 2, j = N-1  → k = 2 to N-1 just three 
adjacent have unknown pressure level:



𝐴𝑘,𝑘−𝑁𝑝𝑘−𝑁 + 𝐴𝑘,𝑘−1𝑝𝑘−1 + 𝐴𝑘,𝑘𝑝𝑘 + 𝐴𝑘,𝑘+1𝑝𝑘+1 + 𝐴𝑘,𝑘+𝑁𝑝𝑘+𝑁 = 𝑏𝑘

When all the equations are written, it results a linear system with 
pentadiagonal matrix:

[𝐴] 𝑝 = 𝑏

• [𝐴] is a square matrix of size N∙M x N∙M; it can be described as a blocks
tridiagonal matrix, with tridiagonal submatrix D and diagonal submatrix C

• 𝑝 and 𝑏 are column vectors of size N∙M
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Where:

Size(D) = Size(C) = N x N

j = 1

j = 2 to M-1

j = M

Since h(x, y) = h(x) matrices D and 
C are everywhere equal to each



Example : hmin = 30m

hmax = 40m

Lx = 30mm
Ly = 60mm

U = 1m/s, V = 0

 = 0.15Pa∙s

ℎ 𝑥, 𝑦 = ℎ𝑚𝑎𝑥 −
ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛

𝐿𝑥
𝑥
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U



SOLUTION OF SIMPLE CASES

ASSIGNMENT D

IMPLEMENT A MATLAB SCRIPT TO SOLVE THE STEADY STATE 2D SOLUTION AND 
OBTAINS THE PRESSURE DISTRIBUTION INTO THE GAP.

%% Clear workspace and 

variables

clear all

close all

clc

%% Preprocessing

%Introducing variables

pa = 1e5;       %Pa

mu = 150e-3;    %Pa*s viscosity

hmin = 20e-6;   %m

hmax = 40e-6;   %m

Lx = 30e-3;     %m

Ly = 60e-3;     %m

U = 1;          %m/s

N = ...;        %n. of internal nodes

M = ...;        %n. of internal nodes

%Discretization

x = ...;

deltax =...;

y =...;

deltay =...;

[X,Y] = meshgrid(x,y);

X = X';

Y = Y';

gap =...;

h = ...;    %internal nodes



NUMERICAL MODELS FOR LUBRICATION

https://edu.epfl.ch/studyplan/en/doctoral_school/energy/coursebook/thin-film-lubrication-and-gas-lubricated-bearings-ENG-649
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