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Thin film lubrication

Federico
Colombo

1. Intro and derivation of the Reynolds equation

2. Analytical & numerical solution of simple cases

* 1D hydrodynamic slider Luigi
: : : Lentini
* 1D slider with normal squeeze motion

* Lubricated cylinder on plane

* Journal bearing with infinite length
Edoardo

e 2D hydrodynamic slider Goti

from Politecnico di Torino
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Lubrication is often a need to save energy (reduce losses
due to friction) and to increase life of the components in
contact through a surface and in relative motion (reduce
or prevent wear).

Ski and track

The behavior of sliding surfaces is strongly modified with Thin film flow

the introduction of a lubricant between them: problems

- Solid Rolling bearings

- Liquid

- gaseous lubricant SRS r

A very important parameter of the lubricant is the = ;ﬂm ¢ ;.,‘ i
viscosity, to which friction is proportional. ' W

NN

Piston skirt and

Acquaplaning Gas lubricated bearings piston rings Fluid bearings
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LUBRICATION REGIMES =Pr-L &

ROUGHNESS CALCULATION

L
Average roughness: R, = %f ly(x)|dx
0
Standard Deviation roughness 1 L
or root mean square (RMS) roughness: R, = I f y(x)?dx
0
Peak-to-valley roughness: Rt = max(y) — min(y)

— Actual surface

L: sample length L y Vet deviations /— Nominal surface
y(x): surface deviation from the reference line

_—1
-

(nominal surface) )2V g \Wﬁl\/\/ "
Ll’ﬂ
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LUBRICATION REGIMES =PrL

DIMENSIONLESS NUMBER

' Boundary Lubrication
Bl i r Thin film lubrication

Sommerfeld number: S = uN /P ¥ | _—Thick film lubrication
N: relative speed ‘.\Jl :
P: load| f Bronze

\ Bobtlm

N |

| i Petroff's low

™" |

L N/P

Low speeds and high loads > Low Sommerfeld number —> high coefficient of friction (boundary lubrication)

High speeds and low loads > High Sommerfeld number - the c.o.f. comes back to increase (full film lubrication)
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1D REYNOLDS’ EQUATION =Pr-L

Let us consider two rigid surfaces separated by a lubricant fluid.

Where:
h(x): clearance u: speed of lubricant along x direction
ho: mean clearance v: speed of lubricant along y direction
lo: characteristic length w: speed of lubricant along z direction
i Ue- Hypotheses:
/-\———-—_—_-\ 1. The flow is only along the x-direction, i.e.
2 LY af") ‘& speed v = 0, w — 0 (negligible)
[ )
X Flow is laminar
—_ Inertia forces are negligible with respect to
) viscous forces
< >
20 4. Speed uis independent of y-coordinate (1D)
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MOMENTUM EQUATIONS OF THE FLUID ELEMENT

Equilibrium along x: —pr Az = Az Ax
dx 0z P
p
p+—Az
Equilibrium along z: G_pAZ Ax = Oz Ax Az l 0z
0z dx
op
Rotation in plane xz: T Ax Az = T,, AzAx p+—Ax
p dx
_ —>| Az —
dp Ot
x=0s z
[ AX
— ap aTxZ p
0z~ ox P X
Tzx = Txz (3)




1D REYNOLDS’ EQUATION

SHEAR STRESS VS SHEAR RATE

* The behaviour of solids is (shear) strain-dependent
Elastic material o= Ee

T=0Gy

* The behaviour of liquids is shear rate-dependent

Newtonian fluid T = Uy
_ Ou N ow
Yax = 5, 7 ox
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Rheopecitic
A
Bingham plastic
@ Thixotropic
o
g / Dilatant
o
Yield Newtonian fluid
stress
(fy)
Pseudo plastic
Tyz =Try
i T2y~ Tyz Rate of angular deformation (dv/d >
o, Wyl ate of angular deformation (dv/dy)
A
Tyz
Tyzy/ Toy
Tzy
—- 0
)—?n A NB: 11 has constant value in space
v, and time for Newtonian fluids




1D REYNOLDS’ EQUATION

Hypotheses:

5. Thin film — K 1,

Ju 0 ou
6. Viscous, Newtonian fluid Toxy = Type = U 3 + " =0 W

=Pr-L

. ) ap . asz ap _ azu
Equation (1) turns into 9% o2 » ar H3,.2
. 1adp ,
Integrating along z: ﬁ dz = f—dz u = 21 axZ +Cc1z+ ¢y

Equation (2) turns into P =

p does not vary across
the z-direction

p = p(x)




1D REYNOLDS’ EQUATION

BOUNDARY CONDITIONS

Boundary conditions for the speed:

{u(z =h) = u, {W(Z =h) =

u(z=0) =u w(z=0)=w,

Constants ¢; and ¢, are determined:

u= ——(z2-zh) + +ub(

Parabolic (Poiseuille)
term (pressure effect)

Linear (Couette) term
(dragging effect)

dx — dx — —

— -

{— —_—
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Boundary conditions for pressure:

p = p, in the input and output sections

—
x
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EXERCISE 1

Find the sign of the pressure derivative at the inlet and outlet section, and at an intermediate section of the thin film and plot
the velocity distributions.

BCs: u, =0 w, =0

ub=+U Wb=0

* Suppose to measure ambient pressure p(0) = p,

at the inlet and outlet sections: p(L,) = pg z
* Plot also the pressure profile.
a>0
e Remember that volume flow is the integral of velocity:
/ 1 0p\ 1 dp Z u
— - h — —
U \zu ax, 2 x Ty (e — W) T |
= a<0
HINT: the volume flow is constant!

u= az?—->bz +c
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Find the sign of the pressure derivative at the inlet and outlet section, and at an intermediate section of the thin film and plot

the velocity distributions.

l Lx J

HINT: the volume flow is constant!

BCs: u, =0 w, =0

ub=+U Wb=0

* Suppose to measure ambient pressure
at the inlet and outlet sections:

p(0) = p,
p(Ly) = pq

* Plot also the pressure profile.

e Remember that volume flow is the integral of velocity:

1 dp 1 0dp Z
u= Zuaxzz_ﬂaZh +E(ua—ub)+ub




% R Y Politecnico

1D REYNOLDS’ EQUATION M i

\ 1859 diIn erla Meccanica
\ ,:: g gn

=Nn e Aerospaziale

EXERCISE 3

Find the sign of the pressure derivative at the inlet and outlet section, and at an intermediate section of the thin film and plot
the velocity distributions.

1 4

BCs: u, =0 w, =0

ub=+U Wb=0

Suppose to measure ambient pressure  p(0) = p,
at the inlet and outlet sections: p(Ly) = p,

* Plot also the pressure profile.

e Remember that volume flow is the integral of velocity:

|< J 1 dp 1 0dp Z
8 _ 2 _ - %F (. —
B I u 2 e 20 0x zh + h(ua uy) + up

HINT: the volume flow is constant!
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EXERCISE 4

Find the sign of the pressure derivative at the inlet and outlet section, and at an intermediate section of the thin film and plot
the velocity distributions.

BCs: u, =0 w, =0

Uy = +U Wp = 0
* Suppose to measure ambient pressure p(0) = p,
at the inlet and outlet sections: p(L,) = p,
* Plot also the pressure profile.

e Remember that volume flow is the integral of velocity:

1dp , 10p Z
’ > u= 2‘uaxz _55”‘ +E(ua—ub)+ub

N

FHINT: the volume flow is constant!
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VOLUME FLOW

The volume flow (per unit of length along the y-direction) is calculated integrating speed u along the z-direction:

B j h 4y - h3 0p  ug + u,
b= ) T T nax T T 2
Poiseuille flow Couette flow

(pressure flow) (drag flow)

Convergent gap
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MASS BALANCE

Let’s consider an element of size hAxAy :

Input mass flow: pq,Ay

0
Output mass flow: (pqx + (gzx) Ax) Ay

| ... 0d(ph)
nner mass variation: m = TAxAy

Continuity equation: pq, Ay — (PQx + 9(pq:) Ax) Ay = d(ph)

0x ot T _a(pqx)z %_I_ha_p

/ ax P "ot
o(ph) _ oh  , dp \_'_I \_'_I

or  Poac "ot

Gap variations Compressibility
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MASS BALANCE - EFFECT OF GAP VARIATION

As the surfaces have speeds also along z direction, the derivative of the film thickness depends on:
* the components wa and wb

. .. .. 0h
* the inclination o of the upper surface

 J

Due to the speed w along the z-direction of the .

walls, the volume increases of quantity 3h

Ax— oh 7 -1 E

0x ua-At Fgs
AV = (w, — wp)AtAxAy e

-
Y,

Due to the translation along the x-direction of the L ua-At

upper surface, the upper volume ABCD here below " F
indicated is subtracted:

AV = Area(ABCD)Ay = < >

ah Ax
= Area(ABEF)Ay = uaAtanAy



1D REYNOLDS’ EQUATION =PrL

DIFFERENTIAL (OR LOCAL) FORM =
AV ah ah Pressure
[}it‘:locity Il 5: <0 \

_=(Wa_Wb)_uaa

ﬁ
AtAxAy dt
S q ueeze effe ct Wedge effeCt (a) Wedge action (b) Squeeze action

? on\ 0
(pqx):p<wa_wb_ _>+h_p

l
I
|

Continuit tion:  — u
ontinuity equation Ox @ ox dt

_ k¥ ap | Ua + uy "
Volume flow per unit  qx = 124 0x 2
length

3
1D Reynolds equation ph”op\ _ i ua Tup) _ olw, —w, —u Oh —h-= Ip =0
(1D RE) 0x 12;1 dx) Ox a b Tagy at
\ J
\_'_I Y \_'J
P0|seU|IIe flow Couette flow Squeeze flow  Compressibility
(pressure flow) (drag flow)
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DIFFERENTIAL (OR LOCAL) FORM

u(z=nh) =u, v(z = h) =y, w(z = h) = w,
Boundary conditions for the speed: u(z = 0) = u v(z = 0) = vy w(z = 0) = w,
h ow Jdu ou ow dv v
2D Thin fil =2 —— |« —
nm lo «1 - <6x '6x> « 0z <ay 'ay> « 0z
_ (Ou odw) = Odu _ (0v ow)\ _ ov
Viscous, Newtonian fluid T =M 5, 9x ) 5 H 5 Ty =M 5, oy ) T H ez
h h3 0p ug +up jh h® dp | v + vy
— - _ qy = | vdz=—
2D volume flow Ay jo udz 1211 9x > v =) 1200y 5
d (ph3op N 0 (ph3 op 0 j Ya + uy i, j Va + vy, oh oh dp 0
— — = — —Wp —Ug=——Vy— | —h—=
ox\12udx) oy\12uady/ ox P 2 dy P 2 P\ Wa = Wb~ Haggy oy ot

2D Reynolds equation (2D

RE)



SOLUTION OF SIMPLE CASES

Analytical & numerical solution of simple cases
* 1D hydrodynamic slider
1D slider with normal squeeze motion

* 1D slider, hydrostatic effect

Numerical solution of simple cases

* Lubricated cylinder on plane
* Journal bearing with infinite length
e 2D hydrodynamic slider




SOLUTION OF SIMPLE CASES

1D HYDRODYNAMIC SLIDER

Incompressible fluid (p is constant)

9 h3ap + 6 Uah 0
ox dx H dx

First integration step: ox K2 + n3

Integrating twice:

where the constant c is calculated
when p(L,) = p, is known:

X
c = 6,uUL = o6ulh,

‘? Yy Politecnico
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Generic profile h(x)

(v s

X d
. ¢ hix)
Lx
L Uy = p(0) = p,
BCs: W ——v P =pa




SOLUTION OF SIMPLE CASES =Pr-L

1D HYDRODYNAMIC SLIDER Generic profile h(x)

s

p(x) =pg — 6uUf — +6ulhg s

a_p__%<1_E>:6uU<hoh—h> I h(x)

dx  h?2 h h?2

From this expression, it is evident that when

ap I_X
h> ho ox <0 For the mass conservation, the o
op lubricant flow g, is constant along To have pressu.re generation it is needed:
h < hg E >0 the x direction: * Viscosity uz 0
U * Speed Ux0
h = hy op —0 D = _Eho * Gap gradient % * 0




S _@?ﬁ %y Politecnico

SOLUTION OF SIMPLE CASES = P L B

N 1859 g di Ingegneria Meccanica
‘\‘\.‘,J!:" e Aerospaziale

LINEAR PROFILE SLIDER

h —h,im X X
h=h,m, <1 R ) = Nin <1 + m—)

Lx hmin Lx
m = hmax — Rmin slope = Rmax — Rmin _ m - Apin
hmin Lx Lx

Let us calculate the expression of ho:

Lx
fo 1 p L, 1 Lx 1 p —Lx/m< 1 1)
— x - . , — x - —
0 h? h?nin 1+m 0 h3 2h’?nin (1 + m)z BCS' Uy = p(O) = Pa

Ly 1

fO ﬁ dx thin

fo 1 p = 2+ m (1+m) Film thickness at which we have the maximum of pressure
o B3t

h():
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LINEAR PROFILE SLIDER - II

dp  6uU " ho\ _6uU (ho —h
dx  h? h]  h? h

Integrating once:

X
L,./m mr- 1+m 1
P —Pa ,fz/ 6uU L’;—(Hm) 1
min 1+mm (1 mLi)
X
‘ hminzzolum
hmGX:40/’Im
i (1+m) X \] Lx =30 mm
oul X 2+m 2-I_mLx
p_pa__hz ) |1 — p” U=1m/s
[ m— -
min L ¥ x| (1 T mLx) | 1 =0.15 Pa-s
0

0 0.005 0.01 0.015 0.02 0.025 0.03

_ Ximi
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1D HYDRODYNAMIC SLIDER, NUMERICAL SOLUTION

. , i-1 | i I i+1
0 ([ h® 0 Uh h> 0 Uh
Pt =0 » P + — = cost O X O K O
Ox \12uox = 2 12p0dx 2 .%_5 ilo.5 X

N+2 nodes along x direction, fromi=0toi= N+1

Discretization of the 1D Reynolds equation with

finite difference method (FDM):
1 d Uh
__p h3 + —
12u dx 2 /|

The flow is evaluated

12u dx 2 at the boundaries of
i+1/2 i-1/2 the control volume

1 A U 1 A
— 2Pl W 4sh - R 4oh o=
12u Ax 1 2 tt3  12ulx|, 1 i—5 2 i3 NB: p gradient is

2 2 N always estimated at
mid-points!
1 piy1—p; U 1 p;—op;_ U
Pi+1 plhgl_l__h | — Pi — Di 1h31+_hi_1=0

120 Ax i+ 2 ity 12u  Ax i-5 2 i3
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1D HYDRODYNAMIC SLIDER, NUMERICAL SOLUTION

0 1 i=N i = N+1
BCs: Pi=0 = Pa - -
@ @ O O @ ®
Pi=N+1 = Pa
. . . h R 1+ R h 4
There results in N linear algebraic l—5 l—5 l+5 I+5 U
. . Pi-1—— — Di + P15 = —12#—(h. 1—h, 1)
equations in N variables: Ax Ax Ax 2 2 2
\ J \ J
|
NB: €b, if i=1 €Eby if i=N i
In matrix form: Ap =b Ai,i—lpi—l + Ai,ipi + Ai,i+1pi+1 = bi > “e E:.
3 3 3 3 10 | =g
1T Ax LT o Ax i o
3 3 3 12uU K E e
A____l(hi—1 +2h° + hiyy”) bi:——'u(hiﬂ—hi—ﬂ 20| A
Lt 2 Ax 4 0 5 10 15 20




I~

SOLUTION OF SIMPLE CASES aa

12

1D HYDRODYNAMIC SLIDER, NUMERICAL SOLUTION

T (hi 4+ h%) h§ 0 ] Tor [ hs—h1 ] WER
z 2) z 7. ! z 2 3
1 3 : —U p
3 (13 3 \h” 1 0 — _“|h 1—h 1| _ a :
12u0x | ° hi—% (hi—% * hz%) 2 Pi 2 | 2 72 12ubx|
i . . : : 3
" 3 (13 3 h +1—nh h° 4
. hN_% (hN_% + hN%)_ py ] el Ry 1 | nel]
5 <108 | | | | | 5 x10°

Direct solving method: p = A\b

0 0005 001 0015 002 0025 003 O 00058 O.0TR G015 0:02 8 0:025 0.0

N=10 x(m) N=20 o
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ASSIGNMENT A1

IMPLEMENT A MATLAB SCRIPT THAT SOLVES THE 1D HYDRODYNAMIC SLIDER
SYSTEM AND OBTAINS THE PRESSURE DISTRIBUTION INTO THE GAP.

COMPARE IT WITH THE ANALYTIC SOLUTION .
MATLAB

o°

%% Clear workspace and % Preprocessing

variables % Introducing variables % Discretization
clear all pa = leb; $Pa X = ...; %nodes position
close all mu = 150e-3; $Pa*s viscosity deltax = ...;
clc hmin = 20e-6; sm gap = ...;
hmax = 40e-6; sm h = ...; % internal nodes
L = 30e-3; sm
Uu=1; $m/ s
N = ...; $n. of internal nodes



SOLUTION OF SIMPLE CASES

Analytical & numerical solution of simple cases
* 1D hydrodynamic slider
e 1D slider with normal squeeze motion

* 1D slider, hydrostatic effect

Numerical solution of simple cases

* Lubricated cylinder on plane
* Journal bearing with infinite length
e 2D hydrodynamic slider
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1D SLIDER, NORMAL SQUEEZE MOTION

Incompressible fluid (p is constant)

0 (ph3 ap> 0 u ’ oh 8

_— A — O
ox\12u0x)  ax\P" 2 Pac ~ Yor
J h |
d (,,0p NB: h constant along the x-direction! / ! ! ! ! ! ! ! ! ! ! /
ox h x|~ 12”h No tilting of the pad is considered L
X
: dp _ _12uW u, =0 p0)=p

R A > —=-Txtq BCs: i *

u, =0 p(Ly) = Dq

9x2 h3 dx h3
\ 6

p=— x%+cx+ ¢y

h3
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SOLUTION OF SIMPLE CASES

1D SLIDER, NORMAL SQUEEZE MOTION

Example with:
Boundary conditions:
6uW W=0.1mm/s
p(O) = C2 = Pa p(Lx) - = n3 sz + 1Ly + Pa = Pa h=20mm
Lx=30mm
d 6uW m=0.15Pa-s
P2 (1, - 20 o1 1 [ | |
dx h3 0 0005 0.01 0015 0.02 0.025 0.03
%108 , 5 X107 xm
6ulV 4 ' ' :
p=—3 XLy —x) +pq |
£
Volume flow: g = 05
3 2
h h3 0p u,+u e} E
=| udz=— + = ' o 057
W 0 0.01 0.02 0.03 T
Gy = == (L = 22) < (m) | -
0 0.01 0.02 0.03
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ASSIGNMENT Az

%% Clear workspace and
variables
clear all
close all
clc

DERIVE THE DISCRTE FORM OF THE REYNOLDS EQUATION AND IMPLEMENT A
MATLAB SCRIPT THAT SOLVES THE 1D SLIDER WITH SQUEEZE MOTION AND
OBTAINS THE PRESSURE DISTRIBUTION INTO THE GAP.

COMPARE WITH THE ANALYTIC SOLUTION MATLAB
%% Preprocessing
% Introducing variables % Discretization
pa = leb; $Pa X = ...; $nodes position
mu = 150e-3; $Pa*s viscosity deltax = ...;
W = -0.1e-3; sm
L = 30e-3; sm
N = ...; $n. of internal nodes
h = 80 e-6; sm




SOLUTION OF SIMPLE CASES

Analytical & numerical solution of simple cases
* 1D hydrodynamic slider
1D slider with normal squeeze motion

* 1D slider, hydrostatic effect

Numerical solution of simple cases

* Lubricated cylinder on plane
* Journal bearing with infinite length
e 2D hydrodynamic slider
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1D SLIDER, HYDROSTATIC EFFECT

. . . Inlet channel
Incompressible fluid (p is constant)
Pressure drop into the inlet channel is neglected

d (ph3dp i, u ! b » d op
- — — = h3 = O
ox <1zu 6x> ax/@“’ 2 ) ot or =0 ax\' ox

Lx
To have pressure generation a pump is used that can provide:
e Constant flow
e Constant inlet pressure X
_ +( y(1 2x
P=Pa™Po ™ Pa Ly BCs:  Ya=0 p(0) = pq
. o oup =0 p(Ly) = Pq
L./2) =
qx = (pO pa) p( x/ ) Po

12ulL,




SOLUTION OF SIMPLE CASES

Analytical & numerical solution of simple cases
* 1D hydrodynamic slider
1D slider with normal squeeze motion

* 1D slider, hydrostatic effect

Numerical solution of simple cases

* Lubricated cylinder on plane
* Journal bearing with infinite length
e 2D hydrodynamic slider
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LUBRICATED CYLINDER ON PLANE

Hypotheses:

* Both cylinder and plane are rigid = rigid-hydrodynamic problem
* The cylinder rotates but its centre is fixed in space

* The plane is moving rightwards with speed U

* Distance hois given

* Incompressible fluid = but no cavitation

* Infinite cylinder length

p(?) = p, Which BCs to be used?

. Uy = wR
BCs: 0= U
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LUBRICATED CYLINDER ON PLANE

Types of boundary conditions:

* Dirichlet: pressure is known

P(Xmin) = Pa;  PXmax) = Pa

* Neumann: pressure gradient is known

dp

— (Xmax) =0

dx Xmin Xmax
* Robin: A combination of pressure and pressure gradient is known

d
ap(Xmax) + b d_z (Xmax) =0
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LUBRICATED CYLINDER ON PLANE

Film thickness: ~ h = hy + R(1 — cos¥) X = Rsin?d

cos9? + sin92 =1

x2
h(X)=h0+R 1-— 1_ﬁ = h0+R— Rz—xz
ah_ X
0x /RZ — x2

1D Reynolds equation:

d [ h® op 0 hua+ub — 0
Ox \12u 0x d0x 2 B

dh dp d%p oh ug + uy h duy, ho dp  0%p
2 3 — ,_a —_— — > — —_— =
3h 8x6x+h d0x2 12M6x 2 +12‘u26 +12“2 X C0x+a0x2 ¢
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LUBRICATED CYLINDER ON PLANE

Angles ¥,4x 1 and Y4% 2 Can be
defined for the boundary conditions:

Xmin = —R sin 19max 1

Xmax = R sin ﬁmax 2

du, wx

BCs: U, = wR cos9 = wVR? — x? = —m

ub=U

Component of speed of the upper cylinder
P(Xmin) = Da along the x-direction

p (xmax) = Pa




SOLUTION OF SIMPLE CASES cprL ™ ha

LUBRICATED CYLINDER ON PLANE

i=0 i=1
° o 0O O o °
ap N @ B Discrete form:  Pivt TP Piva T 2pi + Pi-1 _ o
co-tas—=e iscrete form: T i 2 ;

(ai Ci) ) ai_l_ (ai_l_ci)_
Pi-1\pAx2 " 2ax) ~ Pingz TPt \pyz Topx) T €

13 — 12 ua+ub6h+h6ua _q U+ wR cos Y X h wx
G = €= el 2 dx 2 0x __ H 2 VRZ —x2 2+JRZ =2
l
h. 1—h. 1
, Ah 2 13 l73p U+ wVRZ—x2 «x ho+R—VRZ—x2 wx
Cl_ghiA_ =3hl A :12‘[1 > = 2_ 5 > > —
x| X R? — x R4 —x
= 3h? ‘
i 2 3 1o Ux wx hyo+R wx +a)x _ 1 U—(hy+R)w N
— N T M\ VR 2 2 VRZ—x2 2)  * S

2 |R? — x?
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LUBRICATED CYLINDER ON PLANE

4572197
Example with:
Let us find a solution in order to avoid negative relative 9 =10°
e ) 4 max 1
pressure = cavitation does not appear by hypothesis W=0.1mm/s
35t { H=20mm
R =20 mm
: — 3r 1 U=1m/s
BCs: pmin =?) =pq Le’F us determine g "= 0.15 Pas
p(x —2)=p suitably tuned %25 0 = 1000 rom
max- @ boundaries of the
a_p =0 domain with 2r
x|, consistent BCs
max 2=? 1.5
0
‘ 1 I I I I I I ~ ) _p ) 0
35 3 25 -2 15 -1 05 0 0.5 d0x 9
' max 2
| x (m) 107
! !
: . o : : !
If 9105 1 (i.€. X;mqy ) i given one can look for Xmin | Iterations provide: | Xmax
iteratively, in order to get p( ) =py, ! !

and at the output section.
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Results are compared changing U451, Results are compared changing U4« 2,
with constant Y., » = 1.2° with constant ¥,,,,, 1 = 10°
45 x10° . | | | | 5 x10°
02max=0°
4r al 02 =12° |
92max=1.5°
s 02 =2°
35 L 3 L 92max=3°
92:::=10°
—_ 3 [ - 2 -
< NB: it is recommended not <
2er to exceed Opax 1 = 10° as "l
ot the hypothesis of Reynolds ol
equation is thin film, i.e.
T h/R<<1 B
1 . -2 : : : : ' ' :
-10 -8 6 -4 -3 -2 -1 0 1 2 3 4
x (m) %107

Notice that the solution with 9,,.x1 = Umax 2 iS
antisymmetrical and the first part coincide with the
solution of U542 = 0°

When 9,4« 1 is increased, the pressure distribution
changes just a little, as it is very low when h is large



SOLUTION OF SIMPLE CASES =Pr-L 9

ASSIGNEMENT B

IMPLEMENT A MATLAB SCRIPT TO SOLVE THE STEADY STATE SOLUTION AND OBTAINS THE
PRESSURE DISTRIBUTION INTO THE GAP.

THE SOLUTION HAS TO BE FOUND ITERATIVELY BY ITERATING ON THE INLET AND OUTLET ANGLES

MATLAB
%% Clear workspace and %% Preprocessing
variables $Introducing variables % Iterative discretization
clear all pa = 1leb5; $Pa tetamax2 = ...;
close all mu = 150e-3; $Pa*s viscosity Xmax = ...;
clc hO = 20e-6; $m minimum gap X = ...
R = 20e-3; m X r = ...; %internal nodes
U=1; sm/s deltax = ...
omega = -10*U/R; $rad/s h=...; $N elements
N = ...; $n. of internal nodes dhdx = ; %N elements
tetamaxl = ...;
xmin = —-...;

$Tterative solver



SOLUTION OF SIMPLE CASES

Analytical & numerical solution of simple cases
* 1D hydrodynamic slider
1D slider with normal squeeze motion

* 1D slider, hydrostatic effect

Numerical solution of simple cases

* Lubricated cylinder on plane
* Journal bearing with infinite length
e 2D hydrodynamic slider
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INFINITE LENGTH JOURNAL BEARING

; B 1. Shaft 00; = §: eccentricity Incompressible fluid (p is constant)
2. Bushing y: line of centers No cavitation
% 3. Oil supply port
9 ' * // " p: attitude angle
Ris 0.1% larger than r1 hy: mean radial gap
o BCs: p@W=a)=p*

€ = §/hy: eccentricity ratio
At the lubricant supply port pressure
p* is assumed to be known

NB: there exists the analytical solution!

Film thickness in polar coordinates:  h(6) = hg + 6 cos9 = hy(1 + €cos V) The following hypotheses hold:
1D RE in polar coordinates (T', 19) 9, ( h3 ap > — 0 * The bushing fixed (ub=0, Wb=0)
rod\12u r619 2 * The center of the journal fixed

(w;=0, uy= wr)
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INFINITE LENGTH JOURNAL BEARING

Radial (along the line of actions) and tangential (normal to the line of
actions) bearing reaction components due to the pressure distribution:

[Rr] _ . [CQS 19] ~d9dz S The effec.t of ta.ngentia/ stress
R; sin 9 due to friction is neglected

In steady state conditions there is equilibrium between the external load F
applied on the shaft and the reaction force R exerted by the bearing.

Since the journal has infinite length, we can fr T Tcosd
= p
ft jo [

calculate the force f per unit of axial length: sin19] rad
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INFINITE LENGTH JOURNAL BEARING, NUMERICAL SOLUTION

In order to simplify the numerical solution, without loss of generality we define a
fixed reference system Oxy and assume the oil supply port to be aligned with
horizontal axis x.

The external force is vertical. The attitude angle B and the eccentricity o are to be
determined to have the equilibrium between the external force F and the journal
reaction R.

h(9) =hy+6cos(9—F —m/2)

1. lIteration for module of R = given an attempt attitude angle [3, iterate the
value of eccentricity o increasing it from a small value until the module of R
coincides with F

Force (per unit of length)
components along x and y:

coS 19 dd

2. lteration for direction of R = The attitude angle [3 is then changed and point 1 [ ] jZn
sm19

is to be repeated to find the new eccentricity with the new angle

3. The final attitude angle is found when F is aligned with R.
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INFINITE LENGTH JOURNAL BEARING, NUMERICAL SOLUTION

The problem is similar to the 1D hydrodynamic slider.

0 (h3 0p wr
— BCs: 9 =0)=p{ =2n) =p*
raﬁ<1zuraﬁ+2h> 0 p(9 = 0) = p(§ = 2m) = p

p* large enough to avoid cavitation

Discretization:

1 piy1—pi 5 wr 1 pi—pi-1 5
h —nh = h —nh
2u rbo e T2 Ml T 1n rae i T2 ML

i=0 i
°

6=0 6 =21

There result N linear algebraic equations in N unknown variables
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ASSIGNEMENT C

IMPLEMENT A MATLAB SCRIPT TO SOLVE THE STEADY STATE SOLUTION AND
OBTAINS THE PRESSURE DISTRIBUTION INTO THE JOURNAL BEARING.

THE SOLUTION HAS TO BE FOUND ITERATIVELY BY ITERATING ON ATTITUDE MATIAR
ANGLE AND ECCENTRICITY ’

o°

%% Clear workspace and % Preprocessing

variables $Introducing variables $Discretization
clear all pa = leb; %Pa ambient pressure teta =...;
close all pstar = 20e5; %Pa inlet pressure dteta = ...;
clc mu = 150e-3; % Pa*s gap = ...;

h0 = 200e-6; % symmetric gap thickness h = ...; % internal nodes

omega = 1000*2*pi/60; $rad/s

R=30e-3; sm sSolver

epsx =

epsy =

eps = ...;

fi = atan2 (epsy,epsx); %rad = beta + pi/2

N = ...,



SOLUTION OF SIMPLE CASES

Analytical & numerical solution of simple cases
* 1D hydrodynamic slider
1D slider with normal squeeze motion

* 1D slider, hydrostatic effect

Numerical solution of simple cases

* Lubricated cylinder on plane
* Journal bearing with infinite length
e 2D hydrodynamic slider
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SOLUTION OF SIMPLE CASES

FINITE LENGTH SLIDER, NUMERICAL SOLUTION

e Suppose a convergent gap along x and constant speed U along the
x-direction.

* The speed V along the y-direction and W along the z-direction is
supposed to be null and the gap is independent of the y-coordinate.

h —h,,;
h(x,y) = h(x) = hpax — = == x

Ly
d [ph3dp N d [ph3dp 0 j Ya + 15 0 v 5 d op’ 0
ox\12udx) oy\12udy) ox P 2 2 P\ Wa agx e dy ot
o u, =0 w, =0 p(0,y) = pq o (h3 dp\ 0 [ h®ap\ Uodh
Up = Wy = P\Ly,Y) = Pa Ox\12uox/) o0y\12udy) 20x
v, =0 p(x,0) = pq
vp =0 p(x, Ly) = Dq

Incompressible fluid (p is constant)
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FINITE LENGTH SLIDER, NUMERICAL SOLUTION

Let us start from the most general case with terms also along the y-direction:

9, 9, 9, 9, dh dh
<h3—p> +—<h3—p> —6uU——6uV—=20

ax\ oax)  ay\" ay Ox dy
Discretization N+2 nodes along the x-direction, fromi=0toi=N+1
of 2D RE M+2 nodes along the y-direction, fromj=0toj=M+1

Finite difference discretization: central formulation

dp _ Pi+1— Pi1 d’p  Ppit1 — 2p; + Pica

dx 2Ax dx2 Ax?2

i=0,j=M+1 i=N+1,j=M+1
® ® - ® ®
i,j+1
® O O O ®
i-1,j ] i+1,
® e O @ ®
ij-1
® O O O ®
® ® - ® ®
i=0,j=0 i=N+1,j=0
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FINITE LENGTH SLIDER, NUMERICAL SOLUTION A Piin
\ g i
d (h3adp U d (h3dp V 5 points stencil |
_ ——hl|= .
% (12u ax 2 ) oy <1zu dy 2 ) il Py L Py
‘ qui‘%ul. qx,i+%.j
> Volume flow balance along ” T ”
> the x-direction and y-direction fly,ij-%|
o Lijl
i@hB_U_h — i@hB_U_h + i@;ﬁ_v_h — id_p 3_V_h =
12 dx 2 )|,  \12udx 2 )|, "\12udy 2 )|, \12udy 2 )|,
i+5,] i—5,J Lj+5 Li—3
\ A A A J
1 1 'y ;
ql+§] qi—g»j Lj+5 qi,j—l
-u I piyi—pi,s U 1 pi—piq, 5 V L pjiva—pPi, s V. 1 DPi=Dj1 3
2 Mt T A hi+% T T ax hi—% 2Nt T ay hj+% TN T Ay hj—% =0
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FINITE LENGTH SLIDER, NUMERICAL SOLUTION

The equations can be written in a system using the lexicographic

k=i+({—1)N kelll, (N)(M
order; index k refers to the k-equation: U ) [L (V) (M)]
3 3 3 3 3 3 =0 i=M+ i=N+1,j=M+1
1 hl]—% 1 hi—%,j 1 hi+§,j hi—g,j hi.j‘% hi»f—% PG ® —
120 Ay DY T2 ax PRV T 120\ ax © ax  dy | ay )P v
I,J+ =
3 3 ® @ @ @ ®
N 1 hi+%,j 1 hi,j+1 U L L +V L
12 Ax Pis1j ¥ 12u Ay Pt 2( i+3,j i—%,j) ity i,j—%) -1 k k1

i-1,j i,j

‘ Ay -nDr-n t Akk—1Pr-1 + APk + Akk+1Pk+1 T Ak keNDren = ( k-N

k=1 i,j'l :\—?\I‘
® @ @ \

e——o

LTS W SRS B (ORI AN L]

12u Ay 12,u Ax ~~ °  12u\ Ax Ax Ay Ay i=0,j=0 i=N+1,j=0
1 h; 1 h}

4= Mk k+N
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FINITE LENGTH SLIDER, NUMERICAL SOLUTION

The nodes adjacent to the borders with Dirichlet boundary conditions do not use all the stencil
points as the pressure is known at the borders.

i=0,j=M+1 i=N+1,j=M+1
For instance, inthe casei=1,j=1 = k=1 just three adjacent ® ® . ® ®
have unknown pressure level: k+N
i,j+1 k=MN
® ® ® ® ®
3 3 3 3
1 (hk+1 n Ric—1 n Ricen n hk—N)p ke B -
- k ik o
i-1 1) i+1,j
3 3 12u\ Ax Ax Ay Ay I II - 1) s
+ L%p + 1 hk+N p = k-N
12 Ax KPP T 12u Ay TRV i =N
e @
The terms in orange will move in the vector of known terms ® ° ° ® &

i=0,j=0 i=N+1,j=0
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FINITE LENGTH SLIDER, NUMERICAL SOLUTION

The nodes adjacent to the borders with Dirichlet boundary conditions do not use all the stencil
points as the pressure is known at the borders.

) ) ] ] ) i=0,j=M+1 i=N+1,j=M+1
For instance, inthe casei=2,j=N-1 = k=2 to N-1justthree ® ® ® ® .
adjacent have unknown pressure level: k+N -

ij+l =
® @ é @ ®
1 h;_ 1 (h} hi_, h3 h_ 1 k K+
n k—1 Do — k1 k-1 Tetn | TN - i ¥ 1
12p Ax 12pu\ Ax Ax Ay Ay * ® . ® *
n 1 hiss n 1 hien kN N
Pk+1 Pk+N = k=1 ij-1 =

12u Ax 12u Ay ® . . . ®

® ® ® ® ®

The terms in orange will move in the vector of known terms
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FINITE LENGTH SLIDER, NUMERICAL SOLUTION

When all the equations are written, it results a linear system with
pentadiagonal matrix:

[Alip} = b}

Ap k—NPk-N T Ak k—1Pk—1 + Ak kPx + Ak k+1Pk+1 T Ak k+nPr+N = Dk

* [A] is a square matrix of size N-M x N-M; it can be described as a blocks
tridiagonal matrix, with tridiagonal submatrix D and diagonal submatrix C

* {p}and{b} are column vectors of size N-M

21
3 4/—f, J .
/ cC D C } Where:

A= e B © j=2toM-1

C D C
C Dy =M

Size(D) =Size(C) =Nx N

\

10}

15}

20}

25

0 5 10 15 20 25

4

Since h(x, y) = h(x) matrices D and
C are everywhere equal to each
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FINITE LENGTH SLIDER, NUMERICAL SOLUTION

hmax _ hmin

Ly

h(x,y) = hppax —

0.06

Example : h_. =30um
X (M) 0.03 0 P min = 22/
hmGX:4OIle

Lx =30mm

Ly = 60mm
0.06
U=1m/s, V=0

1 =0.15Pa-s
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ASSIGNMENT D

IMPLEMENT A MATLAB SCRIPT TO SOLVE THE STEADY STATE 2D SOLUTION AND
OBTAINS THE PRESSURE DISTRIBUTION INTO THE GAP.

MATLAB

%% Clear workspace and %% Preprocessing
variables $Introducing variables $Discretization
clear all pa = 1leb; sPa X = ...;
close all mu = 150e-3; $Pa*s viscosity deltax =...;
clc hmin = 20e-6; sm Y =07
hmax = 40e-6; sm deltay =...;
Lx = 30e-3; sm [X,Y] = meshgrid(x,vy);
Ly = 60e-3; sm X = X';
Uu=1; sm/ s Y =Y';
N = ...; $n. of internal nodes gap =...;
M= ...; $n. of internal nodes h = ...; %internal nodes



NUMERICAL MODELS FOR LUBRICATION

https://edu.epfl.ch/studyplan/en/doctoral_school/energy/coursebook/thin-film-lubrication-and-gas-lubricated-bearings-ENG-649




	Diapositiva 1: Thin Film Lubrication and Gas-Lubricated Bearings
	Diapositiva 2: Outline
	Diapositiva 3: Introduction on lubrication
	Diapositiva 4: Lubrication regimes
	Diapositiva 5: Lubrication regimes
	Diapositiva 6: Lubrication regimes
	Diapositiva 9: The Reynolds’ equation
	Diapositiva 10: 1D Reynolds’ equation
	Diapositiva 11: 1D Reynolds’ equation
	Diapositiva 12: 1D Reynolds’ equation
	Diapositiva 13: 1D Reynolds’ equation
	Diapositiva 14: 1D Reynolds’ equation
	Diapositiva 16: 1D Reynolds’ equation
	Diapositiva 17: 1D Reynolds’ equation
	Diapositiva 18: 1D Reynolds’ equation
	Diapositiva 19: 1D Reynolds’ equation
	Diapositiva 20: 1D Reynolds’ equation
	Diapositiva 21: 1D Reynolds’ equation
	Diapositiva 22: 1D Reynolds’ equation
	Diapositiva 23: 1D Reynolds’ equation
	Diapositiva 24: 2D Reynolds’ equation
	Diapositiva 25: Solution of simple cases
	Diapositiva 26: Solution of simple cases
	Diapositiva 27: Solution of simple cases
	Diapositiva 28: Solution of simple cases
	Diapositiva 29: Solution of simple cases
	Diapositiva 30: Solution of simple cases
	Diapositiva 31: Solution of simple cases
	Diapositiva 32: Solution of simple cases
	Diapositiva 33: Solution of simple cases
	Diapositiva 34: Solution of simple cases
	Diapositiva 35: Solution of simple cases
	Diapositiva 36: Solution of simple cases
	Diapositiva 37: Solution of simple cases
	Diapositiva 38: Solution of simple cases
	Diapositiva 39: Solution of simple cases
	Diapositiva 40: Solution of simple cases
	Diapositiva 41: Solution of simple cases
	Diapositiva 42: Solution of simple cases
	Diapositiva 43: Solution of simple cases
	Diapositiva 44: Solution of simple cases
	Diapositiva 45: Solution of simple cases
	Diapositiva 46: Solution of simple cases
	Diapositiva 47: Solution of simple cases
	Diapositiva 49: Solution of simple cases
	Diapositiva 50: Solution of simple cases
	Diapositiva 51: Solution of simple cases
	Diapositiva 52: Solution of simple cases
	Diapositiva 53: Solution of simple cases
	Diapositiva 54: Solution of simple cases
	Diapositiva 55: Solution of simple cases
	Diapositiva 56: Solution of simple cases
	Diapositiva 57: Solution of simple cases
	Diapositiva 58: Solution of simple cases
	Diapositiva 59: Solution of simple cases
	Diapositiva 60: Solution of simple cases
	Diapositiva 61: Solution of simple cases
	Diapositiva 62: Solution of simple cases
	Diapositiva 63: Solution of simple cases
	Diapositiva 64: Solution of simple cases
	Diapositiva 65: Solution of simple cases
	Diapositiva 66: Numerical models for lubrication

